La curiosidad nunca mató al científico

Entradas etiquetadas como ‘electrodos serigrafiados’

Un nuevo paso hacia el humano sensórico: los sensores químicos vestibles

De nuevo les traigo más noticias sobre el humano sensórico del que hablaba en el artículo sobre los biosensores implantables. Y es que es un tema en el que se está investigando mucho y tendremos resultados muy pronto. Hace unos años nadie pensaba que íbamos a llevar tantos sensores con nosotros, y ahora cualquier teléfono inteligente tiene varios, como el GPS, de luminosidad o el sensor magnético, todos ellos sensores físicos. El próximo paso estará en llevar con nosotros sensores químicos, sensores químicos vestibles.

Los últimos avances en sensores electroquímicos nos llevan a novedosas metodologías de fabricación  y mejoras en las técnicas de análisis que posicionan a los sensores electroquímicos en la primera posición para ser los próximos sensores vestibles. Estos sensores son capaces de ofrecer información sobre diferentes factores en tiempo real, con especial relevancia, información sobre la salud de la persona que lleva el sensor, pero también información sobre el entorno, como la contaminación que le rodea o si existe alguna clase de peligro químico.

El primer cambio importante a considerar en cuanto a los sensores electroquímicos convencionales consiste en los diferentes sustratos en los que estos sensores se imprimen. Para que puedan ser llevados por los usuarios, los sustratos tienen que ser flexibles, ya que tanto nuestro cuerpo como la ropa que llevamos no poseen una conformación plana ni rígida. Por tanto, los sensores vestibles deben funcionar correctamente incluso en condiciones de deformación o movimiento, a la vez que estos sensores deben tener una especial robustez.

La versatilidad de las técnicas de fabricación de películas gruesas permite la realización de diferentes geometrías de los electrodos que pueden satisfacer los requerimientos de los dispositivos vestibles. Entre las tecnologías para hacer estos dispositivos se encuentran el serigrafiado (screen-printing) y la transferencia por sello (stamp transfer). La segunda es una alternativa que puede ser utilizada en superficies no planas, característica que no cumple el serigrafiado. Las tintas que se utilizan en estas tecnologías pueden ser de diferentes materiales, como carbono, oro o platino y pueden estar modificadas con otras sustancias que permitan una alta selectividad en el análisis de diferentes componentes, como por ejemplo, enzimas.

Técnica del stamp transfer para fabricación de sensores electroquímicos

Técnica del stamp transfer para fabricación de sensores electroquímicos

Entre los principales materiales que se utilizan para el desarrollo de sensores electroquímicos flexibles se encuentran las poliimidas, el naftalato de polietileno, el tereftalato de polietileno y el Teflón. Estos materiales permiten que los sensores funcionen correctamente incluso encontrándose deformados con un radio de curvatura extremadamente pequeño.

Sensores electroquímicos flexibles

Sensores electroquímicos flexibles

Algunas de las sustancias analizadas correctamente hasta ahora con estos sensores flexibles son ferrocianuro, trinitrotolueno (TNT), nitronaftaleno (NN), e incluso se han desarrollado biosensores de glucosa flexibles. Dentro de esta categoría de sensores destaca un biosensor flexible desarrollado por el grupo de Wang et al. para su inserción en el conducto lacrimal y monitorizar diferentes biomarcadores como norepinefrina, dopamina y glucosa en las lágrimas.

Por tanto, se ha demostrado que estos sensores flexibles son una buena opción para convertirse en sensores vestibles ya que no tienen un funcionamiento diferente cuando están sometidos a deformación o tensión mecánica.

Dentro del grupo de los sensores vestibles destacan, pues, los sensores que pueden ser llevados en la ropa, teniendo como sustrato diferentes materiales textiles. Los sensores que se disponen en estos materiales también tienen que sobrevivir a deformaciones, incluyendo estiramientos. Otra de las características ideales de estos sensores es que no deben influir en la rutina diaria del usuario.

Estos sensores permiten el análisis de sustancias que se encuentran en la transpiración o el sudor. Dentro de este conjunto de sensores se han desarrollado unos calzoncillos con electrodos de carbono que permiten obtener información fisiológica del usuario. Los calzoncillos poseen un contacto íntimo (nunca mejor dicho) con la piel y por tanto, permite la monitorización de diferentes sustancias del organismo con el paradigma de llévalos-y-olvídate. Por tanto estos calzoncillos con sensores electroquímicos son un ejemplo importante de lo que nos podemos encontrar en la ropa del futuro.

Calzoncillos sensóricos

Calzoncillos con electrodos de carbono y su respuesta al NADH

No necesariamente estos sensores llevados en la ropa sólo pueden servir para determinar sustancias fisiológicas, sino que podrían usarse para analizar el entorno del usuario en materia de seguridad. Dentro de este grupo, se ha desarrollado un sensor sobre Gore-TEX que permite la detección de explosivos como el 2,4-dinitrotolueno (DNT) y el TNT, tanto en fase líquida como fase gaseosa.

Sensor vestible sobre Gore-TEX

Sensor vestible sobre Gore-TEX

Ropa sumergible fueron otras de las prendas en las que se ha implementado un sensor vestible, en este caso el material es neopreno. Además, este sensor fue integrado con un potenciostato encapsulado, con lo que permite tener una indicación en tiempo real si determinados contaminantes del agua están por encima de un nivel. Esta prenda podría ser usada por buceadores o surferos que sean alarmados si el agua en el que se encuentran presenta peligro para la salud.

Sistema electrónico del sensor sobre neopreno

Sistema electrónico del sensor sobre neopreno

Un paso más de integración de los sensores con el organismo son los sensores “tatuables, los cuales se transfieren a la piel como si fueran tatuajes temporales.

Sensores electroquímicos tatuables

Diferentes estilos de sensores electroquímicos tatuables

El análisis de sustancias químicas que se encuentren en la superficie de la piel puede proporcionar información relevante sobre la salud del usuario y su exposición a diferentes contaminantes que residan en su entorno local. Estos sensores tatuables han sido utilizados para la detección de sustancias fisiológicas como ácido ascórbico (vitamina C) y ácido úrico, y también para la detección de TNT en el ambiente. Asimismo, tras el lavado de la piel con jabón, el sensor funciona sin problemas.

Incluso con el progreso que se ha conseguido en el campo de los sensores vestibles, la integración de la electrónica, la fuente de energía y la habilidad para comunicarse mediante tecnología wireless siguen siendo los mayores retos que se han de afrontar para que la implantación en la sociedad de estos dispositivos pueda ser una realidad. Mucho trabajo queda por hacer para mejorar las capacidades de estos dispositivos y que los usuarios puedan recibir el estado de su salud en tiempo real directamente en su ordenador o teléfono móvil.

Continuando con la innovación y consiguiendo eliminar estas barreras tecnológicas, los sensores electroquímicos vestibles jugarán un papel muy importante en el futuro hombre sensórico.

Este post participa en la XVII Edición del Carnaval de Química, alojado en el blog Un Geólogo en apuros

ResearchBlogging.orgJoshua Ray Windmiller, & Joseph Wang (2012). Wearable Electrochemical Sensors and Biosensors: A Review Electroanalysis, 24 DOI: 10.1002/elan.201200349

El análisis forense cada vez más cerca de CSI

Sin lugar a dudas CSI ha sido una serie en la que se ha puesto sobre la mesa la importancia que tiene el análisis químico dentro de la ciencia forense.

Dentro del análisis forense tiene una gran importancia conocer si un individuo ha disparado un arma o no, es decir, la identificación de los residuos de un disparo de un arma. Se puede entender que lo ideal sería poseer un método de análisis que sea rápido, fácil, fiable y que pueda utilizarse incluso en el lugar del crimen. En este tipo de análisis un paso crucial es la recolección de la muestra.

El gran Joseph Wang y sus colaboradores han desarrollado un método muy efectivo para este tipo de análisis que posee unas características que lo hacen muy prometedor para su uso en el análisis forense del futuro.

El novedoso protocolo “swipe and scan” desarrollado por estos investigadores consiste en una inicial transferencia mecánica de los residuos de la mano del sospechoso directamente a la superficie de un electrodo serigrafiado. Tras esta transferencia de material, se añade una gota de una disolución sobre el electrodo y se realiza un análisis voltamperométrico de varios metales que existen en el residuo de las armas como son plomo, antimonio y cobre. Solamente se necesita un sistema potenciostático (cada vez más miniaturizados) y un sistema electrónico de obtención de datos, que puede ser un dispositivo móvil, y por tanto el instrumento completo es de un pequeño tamaño y fácilmente portable. Este análisis completo desde la obtención de la muestra hasta la obtención del resultado se lleva a cabo en pocos minutos.

Método Swipe and scan

Tras el disparo de la pistola con una mano, restos metálicos, especialmente plomo y cobre, quedan depositados sobre la mano del individuo que ha disparado. Por tanto, la señal electroquímica medida con la técnica voltamperométrica de redisolución aumentará en gran medida tras el traspaso de los restos del disparo al electrodo de trabajo.

Señal positiva y señal negativa

Otros de los resultados obtenidos son un aumento en los niveles metálicos en individuos cercanos al individuo que ha disparado pero que no han estado en contacto con el arma, o en los individuos que se han lavado las manos tras haber disparado.

Señales de control

C1: blanco, C2: individuo cercano, F: individuo que ha disparado

Es una metodología prometedora pero que todavía necesita algún refinamiento, por ejemplo para evitar falsos positivos de individuos que están en contacto laboralmente con metales como plomo y cobre. Otras mejoras pueden venir en analizar diferentes sustancias de los residuos y así hacer un mapa completo de diferentes armas, y quizás poder identificar incluso el arma con la que se ha disparado.

Como siempre Wang sigue desarrollando novedosas pero muy simples tecnologías para resolver problemas que nos encontramos día a día. Tecnologías baratas, simples pero muy útiles. Esto sí que es innovación.

El análisis químico cada vez se acerca más a la ficción de CSI, es decir, tomar la muestra, analizar y en cinco minutos tener los resultados.

ResearchBlogging.orgAoife M. O’Mahony, Joshua R. Windmiller, Izabela A. Samek, Amay Jairaj Bandodkar, & Joseph Wang (2012). “Swipe and Scan”: Integration of sampling and analysis of gunshot metal residues at screen-printed electrodes Electrochemistry Communications, 23, 52-55 DOI: 10.1016/j.elecom.2012.07.004

 

Este post participa en la XVII Edición del Carnaval de Química, alojado en el blog Un Geólogo en apuros

Electrodos serigrafiados como plataforma analítica

Gracias, en parte, a Heyrovsky, desde hace décadas el análisis electroquímico ha sido utilizado para resolver diferentes problemas analíticos y dar información sobre la presencia y cantidad de una sustancia en una muestra. Las herramientas básicas para la realización de un análisis electroquímico son la instrumentación que se utiliza para aplicar y medir corrientes y potenciales eléctricos, el sistema de tratamiento de datos (generalmente, un ordenador), y los electrodos, que son los elementos que se encuentran en contacto con la disolución y que trabajan como interfase intercambiadora de electrones con las diferentes sustancias químicas para su análisis.

Celda convencional para análisis electroquímico

En los últimos años se están popularizando los electrodos serigrafiados como herramienta para el análisis electroquímico, en sustitución de las celdas convencionales. Un electrodo serigrafiado es una pequeña tarjeta donde se encuentra un circuito eléctrico integrado que consiste en los electrodos en sí, junto a contactos eléctricos para su conexión al sistema de medida. Los primeros trabajos con electrodos serigrafiados aparecieron en la década de los 90, por lo que es una tecnología relativamente moderna. En la actualidad se aplican para el análisis en ámbitos tan variados como el industrial, medioambiental, agroalimentario y farmacéutico.

Electrodo serigrafiado

Esencialmente, el proceso de fabricación de los electrodos serigrafiados consiste en la deposición de una tinta sobre un sustrato determinado utilizando una plantilla con la geometría deseada. A continuación, se procede con una etapa de secado y de curado a cierta temperatura. Por último, se recubre con un aislante para dejar libre solamente las conexiones y el área de trabajo del electrodo.

La variedad de las tintas para serigrafiar es enorme, existen de muchos materiales como grafito, oro, platino, plata, nanotubos de carbono, grafeno, nanopartículas de oro, etc. Un material puede ser más adecuado para el análisis de una sustancia que otro, y se debe utilizar el más conveniente en cada caso. Los materiales más comunes para el sustrato sobre el que se deposita la tinta son materiales cerámicos y materiales plásticos.

Las principales ventajas de estos dispositivos como plataforma analítica frente a otras herramientas son las siguientes:

  • Bajo coste: el precio de estos dispositivos, al poder ser producidos en masa de forma automatizada, es relativamente bajo. Por esta razón, poseen un carácter desechable, son de usar y tirar.
  • Flexibilidad del diseño: el diseño del dispositivo serigrafiado puede ser personalizado, y por tanto, adaptarse a las necesidades del cliente. Por otro lado, la gran variedad de materiales usados para su fabricación permiten su aplicación para resolver diferentes problemas analíticos.
  • Pequeño tamaño: son dispositivos muy pequeños, portables y que pueden ser manejados fácilmente. Estas características junto a la sencilla instrumentación necesaria para emplearlos en análisis electroquímico permite su utilización en análisis in situ, en el lugar donde se necesite sin tener que transportar las muestras al laboratorio. Otra ventaja relacionada con su tamaño, es que se utilizan bajos volúmenes de muestra, alrededor de 50 μL o menos, que se depositan sobre la tarjeta.

Análisis in situ con electrodos serigrafiados

  • Posibilidad de modificaciones: la superficie de los electrodos serigrafiados puede ser fácilmente modificada con otro tipo de sustancias para la mejora de sus propiedades o para la resolución de un problema analítico determinado. Por ejemplo, se pueden modificar con ADN o anticuerpos para fabricar geno o inmunosensores, respectivamente.

Biosensores con electrodos serigrafiados

La importancia que poseen estas herramientas como plataforma analítica es que son la base para la fabricación de sensores y biosensores electroquímicos, gracias a su tamaño y características. Un sensor químico se puede definir como un dispositivo que transforma información química en una señal analítica útil. Consta, principalmente, de dos partes: un receptor, que proporciona el reconocimiento de la sustancia a analizar, y un transductor, que convierte la señal química obtenida de la sustancia en una señal medible por un instrumento. Si el elemento de reconocimiento es un reactivo biológico, se trata de un biosensor.

Esquema sensor químico

En un sensor, los electrodos serigrafiados hacen el trabajo de transductor. Este tipo de electrodos tienen ciertas ventajas para ser utilizados en un sensor, ya que la señal producida consiste en una señal eléctrica que puede ser tratada posteriormente de manera sencilla con un ordenador, además de componerse de un circuito eléctrico que puede ser fácilmente miniaturizado, una ventaja para su uso como sensores.

Desde los años 90, el empleo de los electrodos serigrafiados como herramienta analítica no ha hecho más que aumentar, pero la verdadera revolución está por llegar. La importante y numerosa investigación en métodos de screening para análisis clínico o medioambiental, va a impulsar el uso de los electrodos serigrafiados de una manera notable. Se espera un gran futuro para los electrodos serigrafiados.

Esta entrada participa en el VIII Carnaval de la Tecnología que durante este mes organiza J.M. Mulet en su blog Los productos naturales ¡vaya timo!.