La curiosidad nunca mató al científico

Archivo para septiembre, 2012

El perro, el mejor amigo del hombre para detectar cáncer

PerrínLos perros son animales que llevan domesticados desde aproximadamente 14000 años, y a parte de hacernos compañía, nos ayudan en muchísimas situaciones de la vida diaria. Tienen una capacidad tremenda para aprender y cooperar con los humanos. Todos hemos visto, al menos en la TV, algún perro que le lleva el periódico o las zapatillas a su dueño.

En la mayoría de sus actividades su excelente olfato juega un papel crucial, lo utilizan para identificar cantidad de cosas, o incluso para comunicarse. Su aparato olfatorio es realmente especial. El área del epitelio olfatorio en la cavidad nasal de los perros es mucho mayor que en los humanos. Los pastores alemanes tienen más de 200 millones de células olfatorias en un área de 170 cm2, mientras que en los humanos sólo hay 5 millones de células en 5 cm2 de epitelio olfatorio. El aparato olfatorio de los perros asegura que suficiente moléculas llegan a los receptores de la nariz, y es capaz de detectar medio millón de compuestos olorosos en concentraciones traza que son imperceptibles a la nariz humana.

Los perros entrenados se utilizan para diferentes fines como rastreo, detección de sustancias (explosivos, drogas), identificación de personas por su olor, o búsqueda de víctimas de desastres, entre otras. Es evidente su eficacia en todas estas actividades y se buscan nuevos fines donde puedan ser útiles. Uno de estos novedosos fines es el empleo del extraordinario olfato que poseen para la detección de cáncer en personas, a través del olor que despiden esas personas, al menos hasta que el desarrollo de los métodos descritos en el artículo anterior, en Curiosidades de un químico soñador, sean mejorados.

Todo empezó con el informe sobre dos casos donde perros se comportaban de manera especial con una parte de la piel de sus dueños y tras el análisis médico se demostró que los perros habían identificado tumores en la piel de sus dueños. Muchos de los resultados obtenidos usando perros entrenados son prometedores, sin embargo, estudios más profundos son necesarios para tener una certeza elevada en el uso de los canes para la detección de cáncer.

Los trabajos de investigación publicados hasta ahora demuestran que los perros, tras un entrenamiento apropiado son capaces de discriminar muestras de aliento, orina, heces o tejidos cancerosos de pacientes con cáncer de pulmón, mama, próstata u ovarios de las respectivas muestras obtenidas de humanos sanos con una sensibilidad y selectividad mayor que el 80%.
Por ahora, no se ha podido obtener información sobre a que sustancias químicas el olfato de los perros está respondiendo o la cantidad de estas sustancias. Si en el futuro se pudiera correlacionar, sería un posible método para obtener biomarcadores de cáncer en el olor.

Nariz de perro

Habrá que tener especial atención al entrenamiento de los perros en los estudios donde se obtienen buenos resultados, ya que el entrenamiento puede ser una pieza clave para el resultado exitoso de los análisis.

El análisis biomédico está abierto a diferentes situaciones innovadoras que claramente tengan una base científica, y cuyos buenos resultados se hayan obtenido tras seguir el método correcto de la ciencia.

Aquí tenemos un motivo más para tratar bien a nuestras mascotas, un día podrían detectarnos un cáncer precozmente y salvarnos la vida.

ResearchBlogging.orgBogusław Buszewski, Joanna Rudnicka, Tomasz Ligor, Marta Walczak, Tadeusz Jezierski, & Anton Amann (2012). Analytical and unconventional methods of cancer detection using odor Trends in Analytical Chemistry, 38 DOI: 10.1016/j.trac.2012.03.019

Anuncios

Tu aliento podría decirte si padeces cáncer

Sin duda alguna, una de las enfermedades más importantes que existen en la actualidad es el cáncer. Un porcentaje muy alto de la población tienen, han tenido o tendrán cáncer en algún momento de su vida, y la posibilidad de no recuperarse es bastante elevada, dependiendo del tipo de cáncer.

Por tanto, se está poniendo especial enfásis y bastantes recursos en intentar acabar con esta enfermedad. Mientras llega ese esperado día, es muy importante detectar la patología de una manera precoz, incluso antes de no padecer ninguno de los síntomas. Se están investigando métodos de detección que posean características favorables para el paciente, que no sean invasivos, sin dolor y lo más simples y rápidos posible. Muchos de estos métodos son bastantes novedosos, como la detección de cáncer mediante el análisis del aliento.

Existen evidencias de que algunos compuestos orgánicos volátiles (VOCs), como hidrocarburos, alcoholes, aldehídos o cetonas que pueden ser detectados en el aliento de un paciente son posibles marcadores de cáncer.

Existen diferentes técnicas analíticas con las que se pueden realizar el análisis de estos compuestos volátiles, pero destacan dos: cromatografía de gases con espectrometría de masas (GC-MS) y “arrays” de sensores de gases (nariz electrónica).

Equipo de Cromatografía de gases - Espectrómetro de gases

Equipo de Cromatografía de gases – Espectrómetro de masas

Evidentemente, el análisis de VOCs para detectar cáncer es un método de screening, y por tanto para la total seguridad de que el paciente padece la enfermedad es necesario un análisis más específico e intrusivo, como una biopsia. Pero es una buena opción, por su bajo coste y sencillez, para hacer chequeos globales de la población y encontrar más pacientes con tiempo de tratar su enfermedad. Se necesita más trabajo para identificar, con absoluta certeza, más marcadores de cáncer que se encuentren en el aliento y que aparezcan en las fases más tempranas de la enfermedad, pero el futuro de estos métodos es muy prometedor.

Nariz electrónica para análisis de gases

Nariz electrónica para análisis de gases

Gracias a los investigadores se está consiguiendo que la detección de diferentes enfermedades cada vez sea más fácil, rápida y barata.

ResearchBlogging.orgBogusław Buszewski, Joanna Rudnicka, Tomasz Ligor, Marta Walczak, Tadeusz Jezierski, & Anton Amann (2012). Analytical and unconventional methods of cancer detection using odor Trends in Analytical Chemistry, 38 DOI: 10.1016/j.trac.2012.03.019

Un nuevo paso hacia el humano sensórico: los sensores químicos vestibles

De nuevo les traigo más noticias sobre el humano sensórico del que hablaba en el artículo sobre los biosensores implantables. Y es que es un tema en el que se está investigando mucho y tendremos resultados muy pronto. Hace unos años nadie pensaba que íbamos a llevar tantos sensores con nosotros, y ahora cualquier teléfono inteligente tiene varios, como el GPS, de luminosidad o el sensor magnético, todos ellos sensores físicos. El próximo paso estará en llevar con nosotros sensores químicos, sensores químicos vestibles.

Los últimos avances en sensores electroquímicos nos llevan a novedosas metodologías de fabricación  y mejoras en las técnicas de análisis que posicionan a los sensores electroquímicos en la primera posición para ser los próximos sensores vestibles. Estos sensores son capaces de ofrecer información sobre diferentes factores en tiempo real, con especial relevancia, información sobre la salud de la persona que lleva el sensor, pero también información sobre el entorno, como la contaminación que le rodea o si existe alguna clase de peligro químico.

El primer cambio importante a considerar en cuanto a los sensores electroquímicos convencionales consiste en los diferentes sustratos en los que estos sensores se imprimen. Para que puedan ser llevados por los usuarios, los sustratos tienen que ser flexibles, ya que tanto nuestro cuerpo como la ropa que llevamos no poseen una conformación plana ni rígida. Por tanto, los sensores vestibles deben funcionar correctamente incluso en condiciones de deformación o movimiento, a la vez que estos sensores deben tener una especial robustez.

La versatilidad de las técnicas de fabricación de películas gruesas permite la realización de diferentes geometrías de los electrodos que pueden satisfacer los requerimientos de los dispositivos vestibles. Entre las tecnologías para hacer estos dispositivos se encuentran el serigrafiado (screen-printing) y la transferencia por sello (stamp transfer). La segunda es una alternativa que puede ser utilizada en superficies no planas, característica que no cumple el serigrafiado. Las tintas que se utilizan en estas tecnologías pueden ser de diferentes materiales, como carbono, oro o platino y pueden estar modificadas con otras sustancias que permitan una alta selectividad en el análisis de diferentes componentes, como por ejemplo, enzimas.

Técnica del stamp transfer para fabricación de sensores electroquímicos

Técnica del stamp transfer para fabricación de sensores electroquímicos

Entre los principales materiales que se utilizan para el desarrollo de sensores electroquímicos flexibles se encuentran las poliimidas, el naftalato de polietileno, el tereftalato de polietileno y el Teflón. Estos materiales permiten que los sensores funcionen correctamente incluso encontrándose deformados con un radio de curvatura extremadamente pequeño.

Sensores electroquímicos flexibles

Sensores electroquímicos flexibles

Algunas de las sustancias analizadas correctamente hasta ahora con estos sensores flexibles son ferrocianuro, trinitrotolueno (TNT), nitronaftaleno (NN), e incluso se han desarrollado biosensores de glucosa flexibles. Dentro de esta categoría de sensores destaca un biosensor flexible desarrollado por el grupo de Wang et al. para su inserción en el conducto lacrimal y monitorizar diferentes biomarcadores como norepinefrina, dopamina y glucosa en las lágrimas.

Por tanto, se ha demostrado que estos sensores flexibles son una buena opción para convertirse en sensores vestibles ya que no tienen un funcionamiento diferente cuando están sometidos a deformación o tensión mecánica.

Dentro del grupo de los sensores vestibles destacan, pues, los sensores que pueden ser llevados en la ropa, teniendo como sustrato diferentes materiales textiles. Los sensores que se disponen en estos materiales también tienen que sobrevivir a deformaciones, incluyendo estiramientos. Otra de las características ideales de estos sensores es que no deben influir en la rutina diaria del usuario.

Estos sensores permiten el análisis de sustancias que se encuentran en la transpiración o el sudor. Dentro de este conjunto de sensores se han desarrollado unos calzoncillos con electrodos de carbono que permiten obtener información fisiológica del usuario. Los calzoncillos poseen un contacto íntimo (nunca mejor dicho) con la piel y por tanto, permite la monitorización de diferentes sustancias del organismo con el paradigma de llévalos-y-olvídate. Por tanto estos calzoncillos con sensores electroquímicos son un ejemplo importante de lo que nos podemos encontrar en la ropa del futuro.

Calzoncillos sensóricos

Calzoncillos con electrodos de carbono y su respuesta al NADH

No necesariamente estos sensores llevados en la ropa sólo pueden servir para determinar sustancias fisiológicas, sino que podrían usarse para analizar el entorno del usuario en materia de seguridad. Dentro de este grupo, se ha desarrollado un sensor sobre Gore-TEX que permite la detección de explosivos como el 2,4-dinitrotolueno (DNT) y el TNT, tanto en fase líquida como fase gaseosa.

Sensor vestible sobre Gore-TEX

Sensor vestible sobre Gore-TEX

Ropa sumergible fueron otras de las prendas en las que se ha implementado un sensor vestible, en este caso el material es neopreno. Además, este sensor fue integrado con un potenciostato encapsulado, con lo que permite tener una indicación en tiempo real si determinados contaminantes del agua están por encima de un nivel. Esta prenda podría ser usada por buceadores o surferos que sean alarmados si el agua en el que se encuentran presenta peligro para la salud.

Sistema electrónico del sensor sobre neopreno

Sistema electrónico del sensor sobre neopreno

Un paso más de integración de los sensores con el organismo son los sensores “tatuables, los cuales se transfieren a la piel como si fueran tatuajes temporales.

Sensores electroquímicos tatuables

Diferentes estilos de sensores electroquímicos tatuables

El análisis de sustancias químicas que se encuentren en la superficie de la piel puede proporcionar información relevante sobre la salud del usuario y su exposición a diferentes contaminantes que residan en su entorno local. Estos sensores tatuables han sido utilizados para la detección de sustancias fisiológicas como ácido ascórbico (vitamina C) y ácido úrico, y también para la detección de TNT en el ambiente. Asimismo, tras el lavado de la piel con jabón, el sensor funciona sin problemas.

Incluso con el progreso que se ha conseguido en el campo de los sensores vestibles, la integración de la electrónica, la fuente de energía y la habilidad para comunicarse mediante tecnología wireless siguen siendo los mayores retos que se han de afrontar para que la implantación en la sociedad de estos dispositivos pueda ser una realidad. Mucho trabajo queda por hacer para mejorar las capacidades de estos dispositivos y que los usuarios puedan recibir el estado de su salud en tiempo real directamente en su ordenador o teléfono móvil.

Continuando con la innovación y consiguiendo eliminar estas barreras tecnológicas, los sensores electroquímicos vestibles jugarán un papel muy importante en el futuro hombre sensórico.

Este post participa en la XVII Edición del Carnaval de Química, alojado en el blog Un Geólogo en apuros

ResearchBlogging.orgJoshua Ray Windmiller, & Joseph Wang (2012). Wearable Electrochemical Sensors and Biosensors: A Review Electroanalysis, 24 DOI: 10.1002/elan.201200349

Electroquímica de procesos biológicos (I): el potencial de acción

Con este artículo comienza la serie “Electroquímica de procesos biológicos“, en la cual explicaré algunos de los procesos biológicos donde la electroquímica cumple un papel muy importante. La complejidad de las funciones vitales es enorme, pero todas ellas tienen una base similar que es la transformación de sustancias químicas. Muchos de estos procesos se producen gracias a reacciones o cambios electroquímicos, y por tanto, la electroquímica también es vital para los seres vivos.

Dentro del grupo de los sistemas fundamentales del cuerpo humano se encuentra el sistema nervioso. Es gracias a este sistema que los humanos tenemos la percepción del mundo real, lo captamos mediante los sentidos y el sistema nervioso se ocupa de transmitir esa información a diferentes partes del organismo. Básicamente, nos permite entender nuestro entorno y realiza las acciones adecuadas para la correcta y coordinada interacción con éste.

Las neuronas son las células funcionales del tejido nervioso, y por las cuales se transmite la información que llega al sistema nervioso. Las neuronas están conectadas unas con otras y se van intercambiando señales que el organismo puede entender. Gracias a ellas podemos pensar, movernos o sentir.

Esquema de una neurona

Esquema de una neurona

La comunicación entre las neuronas se realiza mediante una señal electroquímica, el potencial de acción.

Las neuronas como otras células, poseen una membrana plasmática que está en contacto por un lado con el interior de la célula y por el otro lado con el exterior. Una de las características más importantes de esta membrana es que posee permeabilidad selectiva, es decir, deja pasar ciertas sustancias en determinadas situaciones tanto hacia el exterior de la célula como hacia el interior.

Membrana plasmática

Membrana plasmática

En ambas fronteras de esta membrana están presentes diferentes iones, tanto positivos como negativos. Entre ellos, se encuentran K+ y Na+, que son esenciales para el potencial de acción.

Debido a estas sustancias iónicas que se encuentran a un lado y otro de la membrana, en ésta aparece una diferencia de potencial eléctrico, el potencial de membrana. Cuando este potencial se despolariza (mediante un estímulo externo), es decir, el potencial disminuye más allá de un cierto valor umbral, se genera un potencial de acción.

Estos cambios en el potencial de membrana son debidos a los movimientos de iones Na+ y K+ a través de la membrana plasmática de la neurona mediante fuerzas electroquímicas en los llamados canales iónicos.

Canales de Na+ y K+ en la membrana celular

Canales de Na+ y K+ en la membrana celular

El proceso se basa, esencialmente, en que primero se abre el canal iónico del Na+, introduciéndose estos iones en el interior de la célula, y generándose el potencial de acción. En ese momento se empiezan a abrir los canales del K+, y se empiezan a cerrar los del Na+, y por tanto, iones K+ se moverán hacia el exterior de la célula, volviendo a tomar el potencial de membrana el valor que había al inicio del proceso.

Este proceso se propaga por la membrana celular hasta llegar al axón de la neurona, lugar donde se produce la transmisión de información a otra célula.

Mediante las señales de estos potenciales de acción se producen determinadas sustancias químicas en el sistema nervioso, los llamados neurotransmisores, que se encargarán de la transmisión del impulso hacia otras neuronas o hacia otro tipo de células para producir una respuesta fisiológica.

Se puede ver de manera muy didáctica todo el proceso del potencial de acción en una animada animación en BrainU.

Este post participa en el XVI Carnaval de Biología que durante esta edición se organiza en El Blog Falsable.